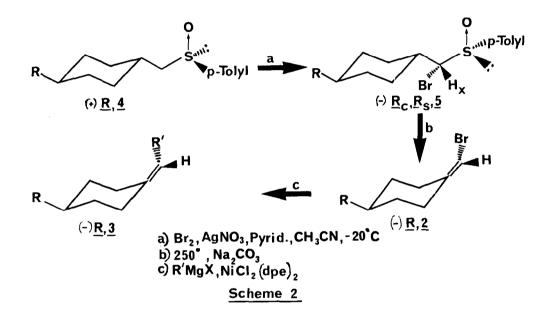

ENANTIOSPECIFIC SYNTHESIS OF OPTICALLY ACTIVE CYCLOHEXYLIDENE BROMOMETHANES

Guy SOLLADIE* and Richard G. ZIMMERMANN Ecole Nationale Supérieure de Chimie (ERA 687) Université Louis Pasteur - 67008 STRASBOURG - FRANCE

Abstract. Optically pure cyclohexylidene bromomethanes were prepared by stereospecific bromination alpha to a chiral sulfoxide, followed by the stereospecific pyrolytic elimination of the sulfoxide moiety.


Optically active cyclohexylidene bromomethanes $\underline{2}$ are important intermediates in the synthesis of chiral alkylidenecyclohexanes $\underline{3}$. As a matter of fact, Walborsky^{1,2} showed that $(-)\underline{R}$ (4-methylcyclohexylidene) ethane $\underline{3}\underline{a}$ could be obtained from the corresponding vinylic bromide $\underline{2}\underline{a}$ with 92% of retention of configuration by a coupling reaction with methyllithium in the presence of a catalyst, dichloro [1,2 bis-(diphenylphosphino)ethane] Nickel II. Till now the only way to obtain the optically active vinylic bromide $\underline{2}\underline{a}$ was from resolved 4-methylcyclohexylidene acetic $\underline{1}\underline{a}$ by stereospecific bromination followed by stereospecific bromodecarboxylation leading to overall inversion of configuration^{3,4} (Scheme 1).

We recently reported an enantiospecific synthesis of chiral 4-substituted cyclohexylidene acetic acid^7 .

We now report a new enantiospecific synthesis of cyclohexylidene bromomethanes by stereospecific bromination of chiral sulfoxides. Although it was known, from the work of Montanari, Colonna and Cinquini⁵, that bromination of p-Tolylmethylsulfoxide with bromine in the presence of silver nitrate proceeded with complete inversion of configuration at sulfur, very little was known about the stereochemistry of the brominated carbon atom⁶.

Our study started from sulfoxide 4^7 .

Sulfoxide <u>4</u> was brominated in acetonitrile with bromine in presence of silver nitrate and pyridine⁵ at -20°C. The reaction was totally stereospecific since only one diastereoisomer⁸, <u>RR</u> <u>5</u>, could be detected by NMR at 200 MHz.

Table I : α -bromosulfoxides <u>RR</u> , <u>5</u>								
R		$\left[\alpha\right]_{D}^{20}$ (acetone) Rf*		NMR 8 _{HX}	Yield %			
<u>5a</u>	CH3	-152°(C 1.2)	0.58	4.36 (J = 6)	62			
<u>5b</u>	сн ₂ осн ₃	-138°(C 2.4)	0.44	4.36 (J = 6)	50			
<u>5c</u>	^{n-C} 5 ^H 11	-121°(C 1.4)	0.68	4.35 (J = 6)	73			
<u>5d</u>	t-Bu	-118°(C 1.0)	0.66	4.35 (J = 6)	43			

* CH_2Cl_2 /ether/n-hexane = 50/25/25

The pyrolytic elimination of the sulfoxide group was conducted without solvent in the presence of sodium carbonate at 250°C for 15 min. In the case of sulfoxide $\underline{5a}$ (R = CH₃), the known methyl-4-cyclohexylidene bromomethane $\underline{2a}$ was obtained : $[\alpha]_D = -50.3^\circ$ (Lit.³ $[\alpha]_D -50.4^\circ$). Comparison of the optical rotations showed that the enantiomeric purity of the product was higher than 99%. Therefore the pyrolysis was completely stereospecific, no racemization of the sulfoxide occuring at this temperature. Finally the known absolute configuration⁴(-)<u>R</u> of the vinylic bromide <u>2a</u> allowed us to assign the configuration <u>RR</u> to the diastereoisomer <u>5a</u>. The similarity of the NMR characteristics⁸, Rf and optical rotations of compounds <u>5</u>, as well as the negative rotations of all the vinylic bromides <u>2</u>, are fully consistent with the absolute configuration being RR for all the α -bromosulfoxides 5.

	Table II : Cyclohexylidene bromomethanes <u>2</u> , <u>R</u>						
	R	$\left[\alpha\right]_{D}^{20}$ (EtOH)	NMR vinylic H	Yield %			
<u>2a</u>	CH ₃	-50.3 (C 4.7)	5.88	70			
<u>2b</u>	сн ₂ осн ₃	-50.0 (C 1.8)	5.93	78			
<u>2c</u>	n-C5 ^H 11	-17.0 (C 3.5)	5.87	50			
<u>2d</u>	t-Bu	-17.0 (C 1.1)	5.90	40			

Finally these vinylic bromides $\underline{2}$ were coupled with Grignard reagents at room temperature in presence of NiCl₂ (dpe)₂ and afforded optically active cyclohexylidene cyclohexanes $\underline{3}$. The unusual nature of ligands R' is due to the fact that these molecules were involved in our studies dealing with liquid crystals⁹.

Table III : Alkylidene cyclohexanes <u>3</u> , <u>R</u>								
R	R'	m.p.	[α] _D (CHC1 ₃)	Yield %				
CH2OCH3	^{n-C} 4 ^H 9	liquid	-3.2 (C 4.8)	70				
CH2OCH3	Hgc~~~~~	liquid	-2.0 (C 1.4)	90				
сн ₂ осн ₃	Mé ⁰ -O-o-	68-71	-1.8 (C 3.3)	70				
n-C5H11	Me O-O-O	41-2	-0.5 (C 0.8)	30				

Acknowledgments. We thank CNRS (NSF-CNRS ATP n° 0782) and ANVAR for financial support. We also acknowledge Prof. H.M. WALBORSKY (Florida State University) for helpful discussions.

References and notes.

- 1) H.M. Walborsky, R.B. Banks, J. Org. Chem. 1981, 46, 5074
- 2) M. Duraisamy, H.M. Walborsky, J. Am. Chem. Soc. 1984 in Press
- 3) W.H. Perkin, W.J. Pope, J. Chem. Soc. 1911, 99, 1510
- 4) H.M. Walborsky, R.B. Banks, Bull. Soc. Chim. Belge, 1980, 89, 849
- 5) a) P. Calzavara, M. Cinquini, S. Colonna, R. Fornasier, F. Montanari, J. Am. Chem. Soc. 1973, 95, 7431
 - b) S. Colonna, R. Annunziata, M. Cinquini, Phosphorus and Sulfur 1981, <u>10</u>, 197
 - c) M. Cinquini, S. Colonna, R. Fornasier, F. Montanari, J. Chem. Soc. Perkin Trans.I 1972, 1886
- M. Cinquini, S. Colonna, F. Montanari, J. Chem. Soc. Perkin Trans. I, 1974, 1719
- 7) G. Solladié, R. Zimmermann, R. Bartsch, H.M. Walborsky, Synthesis 1984, in Press
- 8) The complete inversion of configuration at sulfur during the bromination step was demonstrated by reductive debromination of diastereoisomer $\underline{5b}$ with Zn/MeOH/H₂SO₄, affording the enantiomer of the starting sulfoxide $\underline{4b}$ $([\alpha]_D^{-182^\circ}, C 1.6, acetone, Lit.^7 [\alpha]_D^{+} + 182^\circ)$. The two diastereoisomers $\underline{5b} \underbrace{S}_{C} \underbrace{S}_{S}$ and $\underline{5b} \underbrace{R}_{C} \underbrace{S}_{S}$ were made for identification by another route : reaction of carbanion of sulfoxide $\underline{4}$ R with dibromoethane giving a diastereoisomeric ratio SS/RR = 32/68. These two diastereoisomers showed very sharp differences in NMR for the proton H_X ($\delta = 4.36$, J = 6Hz for the SS series and $\delta = 4.41$, J = 2.4 Hz for the RS series) and in TLC (Rf = 0.44 (SS), 0.42 (RS), solvent : CH_2Cl_2 /ether/hexane : 50/25/25). The absolute configuration of diastereoisomer $\underline{5}$ was determined after pyrolytic elimination of the sulfoxide.
- 9) G. Solladié, R.G. Zimmermann, Angew. Chem. Int. Ed. 1984, <u>23</u>, 348. (Received in France 19 September 1984)

5772